REGULARITY FOR THE HARVEY-LAWSON SOLUTIONS TO THE COMPLEX PLATEAU PROBLEM

STEPHEN S.-T. YAU

1. Introduction

It seems that one of the natural fundamental questions of complex geometry is the classical complex Plateau problem. Specifically, the problem asks which odd-dimensional, real submanifolds of \mathbf{C}^N are boundaries of complex submanifolds in \mathbf{C}^N .

Recall that a C^1 -submanifold M of a complex manifold X is said to be maximally complex if

$$\operatorname{codim}_{\mathbb{R}}(T_xM\cap J(T_xM))=1 \quad \text{for all } x\in M,$$

where J denotes the almost complex structure of X, and the codimension refers to M. It was a fundamental contribution to complex geometry by Harvey and Lawson [3] that if M is compact, oriented, and of dimension larger than 1, and if X is Stein, then maximal complexity implies that M forms the boundary of a holomorphic n-chain in X.

If M is a CR-manifold in the sense of Kohn [6], [2] (see Definition 2.1 below), then there is a natural filtration associated to the De Rham complex of M with complex coefficients [8], [9]. The $E_1^{p,q}$ term of the spectral sequence associated to this filtration is called the Kohn-Rossi cohomology group $H_{KR}^{p,q}(M)$ of M [7], [8], [9]. In [9], we gave smooth solutions to the classical complex Plateau problem in the following cases.

Theorem 1. Let M be a compact, orientable, connected CR-manifold of real dimension 2n-1, $n \geq 3$, in a Stein manifold X of complex dimension n+1. Suppose that M is strongly pseudoconvex. Then M is a boundary of a complex submanifold $V \subseteq X-M$ if and only if Kohn-Rossi's cohomology groups $H_{KR}^{p,q}(M)$ are zero for $1 \leq q \leq n-2$. However, for strongly pseudoconvex (see Definition 2.4 below) CR-

However, for strongly pseudoconvex (see Definition 2.4 below) CR-manifolds of real dimension three in \mathbb{C}^3 , the smoothness of Harvey-Lawson solutions to the classical complex plateau problem remains open.

Received February 27, 1990 and, in revised form, June 19, 1990. Research partially supported by National Science Foundation grant DMS-8822747.

426 S. S.-T. YAU

The purpose of this paper is to answer this question. In fact we shall introduce a numerical CR-invariant $\tau(M)$ for any compact connected (2n-1)-dimensional strongly pseudoconvex CR-manifold M in \mathbb{C}^{n+1} , $n \geq 2$. The vanishing of $\tau(M)$ will give a necessary and sufficient condition for the smoothness of Harvey-Lawson solutions to the classical complex Plateau problem for M. More precisely we have

Definition. Let M be a compact connected (2n-1)-dimensional strongly pseudoconvex CR-manifold in \mathbb{C}^{n+1} , $n \geq 2$. By a theorem of Harvey and Lawson (see [3]), M is the boundary of a complex variety V in the C^{∞} sense. V is smooth except at finitely many isolated singular points $\{p_1, \cdots, p_k\}$. Let τ_i be the number of local moduli of V at p_i (see Definition 2.5 below). We define $\tau(M)$ to be $\tau_1 + \tau_2 + \cdots + \tau_k$.

Theorem 2. Let M be a compact connected (2n-1)-dimensional strongly pseudoconvex CR-manifold in \mathbb{C}^{n+1} , $n \geq 2$. The $\tau(M)$ defined above is a CR-invariant in the sense that if $M' \subseteq \mathbb{C}^{n+1}$ is another (2n-1)-dimensional CR-manifold which is CR-diffeomorphic to M, then $\tau(M) = \tau(M')$. In fact for $n \geq 3$, $\tau(M) = \dim H^{p,q}_{KR}(M)$ for p+q=n-1, n and $1 \leq q \leq n-2$. Moreover, M is a boundary of the complex submanifold $V \subseteq \mathbb{C}^{n+1} - M$ if and only if $\tau(M) = 0$.

Remark. It will be of extreme interest to give an intrinsic interpretation to $\tau(M)$ for n=2. In fact, for n=2, if M admits a transversal holomorphic S^1 -action, Lawson and the present author [5] have proved that a necessary and sufficient condition for the regularity of the Harvey-Lawson solution to the complex Plateau problem is $\pi_1 = 0$.

2. Preliminaries and proof of Theorem 2

In this section, we shall recall some basic definitions which are needed in this paper.

Definition 2.1. Let M be a compact, connected, orientable real manifold of dimension 2n-1. A CR-structure on M is an (n-1)-dimensional subbundle S of CTM such that the following are true:

- $(1) S \cap \overline{S} = \{0\}.$
- (2) If L, L' are local sections of S, then so is [L, L'].

Definition 2.2. Let L_1, \cdots, L_{n-1} be the local basis for sections of S over an open subset $U \subset M$ so that $\overline{L}_1, \cdots, \overline{L}_{n-1}$ form a local basis for sections of \overline{S} . Since $S \oplus \overline{S}$ has complex codimension one in CTM, we may choose a local section N of CTM such that $L_1, \cdots, L_{n-1}, \overline{L}_1, \cdots, \overline{L}_{n-1}, N$ span CTM. We may assume that N is purely imaginary. Then

the matrix (c_{ij}) , defined by

$$[L_i, L_j] = \sum a_{ij}^k L_k + \sum b_{ij}^k \overline{L}_k + c_{ij} N,$$

is Hermitian and is called the Levi form.

The Levi form is noninvariant; however, its essential features are invariant.

Proposition 2.3. The number of nonzero eigenvalues and the absolute value of the signature of (c_{ij}) at each point are independent of the choice of L_1, \dots, L_{n-1}, N .

Definition 2.4. Let M be a CR-manifold. Then M is strongly pseudoconvex if the Hermitian matrix (c_{ij}) obtained in Definition 2.2 is always nonsingular and its eigenvalues are of the same sign.

Definition 2.5. Let f be a holomorphic function in \mathbb{C}^{n+1} . Suppose that $V = \{z \in \mathbb{C}^{n+1} : f(z) = 0\}$ has an isolated singularity at the origin. Then the number of local moduli τ of V at 0 is given by

$$\tau = \dim \mathbb{C}[[z_0, z_1, \cdots, z_n]] / \left(f, \frac{\partial f}{\partial z_0}, \cdots, \frac{\partial f}{\partial z_n} \right).$$

Proof of Theorem 2. By a theorem of Harvey and Lawson, there exist complex varieties V and V' in \mathbb{C}^{n+1} such that $\partial V = M$ and $\partial V' = M'$ in the C^{∞} sense. V is smooth except at finitely many isolated singular points $\{p_1, \dots, p_k\}$ while V' is smooth except at finitely many isolated singular points $q_1, \dots, q_{k'}$. Since M is strongly pseudoconvex, we can take a 1-convex exhaustion function φ on V such that $\varphi \geq 0$ on V and $\varphi(y) = 0$ if and only if $y \in \{p_1, \dots, p_k\}$. Put $V_r = \{y \in V : \varphi(y) \le 1\}$ r). Let $\sigma = (\sigma_0, \sigma_1, \dots, \sigma_n)$ be the CR-diffeomorphism from M to M'. By the strong pseudoconvexity of $M = \partial V$, we see that the σ_i , $0 \le i \le n$, extend to a holomorphic function defined in a neighborhood U of M in V. Since $V - V_r \subseteq U$ for r large enough, the extension of σ_i is holomorphic on $V - V_r$ for $0 \le i \le n$. On the other hand, by Andreotti and Grauert (Théorème 15 of [1]), $H^0(V-\{p_1\,,\,\cdots\,,\,p_k\}\,,\,\mathscr{O})\to \mathbb{C}$ $H^0(V-V_r,\mathscr{O})$ is an isomorphism. So the extension of σ_i is holomorphic on $V - \{p_1, \dots, p_k\}$ for $0 \le i \le n$. Observe that V is a complex hypersurface. Therefore, p_1, \dots, p_k are hypersurface singularities, and in particular they are normal singularities. Hence $\bar{\sigma}_i$, the extension of σ_i , is actually holomorphic on V for all $0 \le i \le n$, and we have a holomorphic map $\bar{\sigma}: V \to \mathbb{C}^{n+1}$ such that the restriction of $\bar{\sigma}$ to M is σ . Clearly $\bar{\sigma}(V)$ and V' are both complex varieties in \mathbb{C}^{n+1} , which have the same boundary M'. By the uniqueness of the solution to the complex

428 S. S.-T. YAU

Plateau problem (see [3]), we see that $\bar{\sigma}(V) = V'$. Similarly let σ' be the inverse mapping of σ , which is a CR-diffeomorphism from M' to M. Since M' is also strongly pseudoconvex, the same argument as before shows that σ' extends to a holomorphic map $\bar{\sigma}': V' \to \mathbf{C}^{n+1}$ such that $\bar{\sigma}'(V') = V$. $\bar{\sigma}' \circ \bar{\sigma} \colon V \to V$ is a holomorphic mapping which extends the identity map $\mathrm{Id} \colon \partial V \to \partial V$. By the uniqueness of the extension, we conclude that $\bar{\sigma}' \circ \bar{\sigma} \colon V \to V$ is an identity map. Similarly, $\bar{\sigma} \circ \bar{\sigma}' \colon V' \to V'$ is an identity map. Hence, $\bar{\sigma} \colon V \to V'$ is biholomorphic and k = k'. Without loss of generality, we may assume that $\bar{\sigma}(p_i) = q_i$ and hence $\tau_i = \tau_i'$ for all $1 \le i \le k$, where τ_i and τ_i' are local moduli of V and V' at p_i and q_i , respectively. It follows that

$$\tau(M) = \sum_{i=1}^{k} \tau_i = \sum_{i=1}^{k} \tau'_i = \tau(M').$$

For $n \ge 3$, $\tau(M) = \dim H_{KR}^{p,q}(M)$ for p+q=n-1, n and $1 \le q \le n-2$. This was proved in our previous paper [9].

Finally, it is easy to see that τ_i vanishes if and only if V is smooth at p_i . Hence $\tau(M)=0$ if and only if $\tau_i=0$ for all $1\leq i\leq k$ if and only if V is smooth. q.e.d.

The following well-known remark, which is included here for the convenience of the readers, implies that $\tau_i = \tau_i'$ for all $1 \le i \le k$ in the above proof of Theorem 2.

Let \mathscr{O}_{n+1} denote the ring of germs at the origin of holomorphic functions $(\mathbb{C}^{n+1},0)\to \mathbb{C}$. If (V,0) is a germ at the origin of a hypersurface in \mathbb{C}^{n+1} , let I(V) be the ideal of functions in \mathscr{O}_{n+1} vanishing on V, and let f be a generator of I(V). It is well known that $V-\{0\}$ is nonsingular if and only if the C-vector space

$$A(V) = \mathscr{O}_{n+1} / \left(f, \frac{\partial f}{\partial z_0}, \cdots, \frac{\partial f}{\partial z_n} \right) \mathscr{O}_{n+1}$$

is finite dimensional. In this case,

$$A(V) \cong \mathbb{C}[[z_0, z_1, \dots, z_n]] / \left(f, \frac{\partial f}{\partial z_0}, \dots, \frac{\partial f}{\partial z_n}\right).$$

The germ at 0 of A(V) is the base space for the miniversal deformation of (V,0). So A(V), provided with the obvious C-algebra structure, is called the *moduli algebra* of V.

Remark 2.6. Suppose (V,0) and (W,0) are germs of hypersurfaces in \mathbb{C}^{n+1} , and $V-\{0\}$ is nonsingular. If (V,0) is biholomorphically equivalent to (W,0), then A(V) is isomorphic to A(W) as a C-algebra.

Proof. Let f and g be generators of I(V) and I(W), respectively. Let $h: (\mathbf{C}^{n+1}, 0) \to (\mathbf{C}^{n+1}, 0)$ be the germ at the origin of a biholomorphically mapping such that h(V) = W. Then there exists $u \in \mathscr{O}_{n+1}$ such that $f = u(g \circ h)$ and u(0) = 0. Write $h = (h_0, h_1, \cdots, h_n)$, where $h_i: (\mathbf{C}^{n+1}, 0) \to (\mathbf{C}, 0)$. Then

$$\frac{\partial f}{\partial z_i} = \frac{\partial u}{\partial z_i}(g \circ h) + u \sum_{j=0}^n \left(\frac{\partial g}{\partial z_j} \circ h\right) \frac{\partial h}{\partial z_i}.$$

Hence, $\frac{\partial f}{\partial z_i}$ is in the ideal generated by $g \circ h$, $\frac{\partial g}{\partial z_0} \circ h$, \cdots , $\frac{\partial g}{\partial z_n} \circ h$. A similar argument shows that $\frac{\partial g}{\partial z_i}$ is in the ideal generated by $f \circ h^{-1}$, $\frac{\partial g}{\partial z_0} \circ h^{-1}$, \cdots , $\frac{\partial g}{\partial z_n} \circ h^{-1}$. From this, it follows immediately that

$$h^*\left(g, \frac{\partial g}{\partial z_0}, \cdots, \frac{\partial g}{\partial z_n}\right) \mathscr{O}_{n+1} = \left(f, \frac{\partial f}{\partial z_0}, \cdots, \frac{\partial f}{\partial z_n}\right) \mathscr{O}_{n+1},$$

where $h^*: \mathscr{O}_{n+1} \to \mathscr{O}_{n+1}$ is the C-algebra isomorphism defined by $h^*u = u \circ h$. Hence h^* induces the C-algebra isomorphism $A(V) \cong A(W)$.

References

- [1] A. Andreotti & H. Grauert, Théoremes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France 90 (1962) 193-259.
- [2] G. B. Folland & J. J. Kohn, The Neumann problem for the Cauchy-Riemann complex, Annals of Math. Studies, No. 75, Princeton Univ. Press, Princeton, NJ, 1972.
- [3] R. Harvey & B. Lawson, On boundaries of complex analytic varieties. I, Ann. of Math. (2) 102 (1975) 233-290.
- [4] B. Lawson & S. S.-T. Yau, Holomorphic symmetries, Ann. Sci. École Norm. Sup (4) 20 (1987) 557-577.
- [5] ____, On the smoothness of solutions to the complex Plateau problem: An addendum to the paper "Holomorphic Symmetries" (submitted).
- [6] J. J. Kohn, Boundaries of complex manifolds, Proc. Conf. on Complex Manifolds (Minneapolis), Springer, New York, 1965.
- [7] J. J. Kohn & H. Rossi, On the extension of holomorphic functions from the boundary of a complex manifold, Ann. of Math. (2) 81 (1965) 451-472.
- [8] N. Tanaka, A differential geometric study on strongly pseudoconvex manifolds, Lectures in Mathematics, Kyoto University 9, Kinokuniya Book Store Co., Tokyo.
- [9] S. S.-T. Yau, Kohn-Rossi cohomology and its application to the complex plateau problem, I, Ann. of Math. (2) 113 (1981) 67-110.

University of Illinois at Chicago